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Abstract

We introduce the independent factor analysis (IFA) method for recovering independent hidden sources
from their observed mixtures. IFA generalizes and unifies ordinary factor analysis (FA), principal com-
ponent analysis (PCA), and independent component analysis (ICA), and can handle not only square
noiseless mixing, but also the general case where the number of mixtures differs from the number of
sources and the data are noisy. IFA is a two-step procedure. In the first step, the source densities, mix-
ing matrix and noise covariance are estimated from the observed data by maximum likelihood. For this
purpose we present an expectation-maximization (EM) algorithm, which performs unsupervised learning
of an associated probabilistic model of the mixing situation. Each source in our model is described by
a mixture of Gaussians, thus all the probabilistic calculations can be performed analytically. In the
second step, the sources are reconstructed from the observed data by an optimal non-linear estimator.
A variational approximation of this algorithm is derived for cases with a large number of sources, where
the exact algorithm becomes intractable. Our IFA algorithm reduces to the one for ordinary FA when
the sources become Gaussian, and to an EM algorithm for PCA in the zero-noise limit. We derive an
additional EM algorithm specifically for noiseless IFA. This algorithm is shown to be superior to ICA
since it can learn arbitrary source densities from the data. Beyond blind separation, IFA can be used
for modeling multi-dimensional data by a highly constrained mixture of Gaussians, and as a tool for
non-linear signal encoding.

1 Statistical Modeling and Blind Source Separation

In the blind source separation (BSS) problem one is presented with multi-variable data measured by L'
sensors. It is known that these data arise from L source signals that are mixed together by some linear
transformation corrupted by noise. It is further known that the sources are mutually statistically indepen-
dent. The task is to obtain those source signals. However, the sources are not observable and nothing is
known about their properties beyond their mutual statistical independence, nor about the properties of the
mixing process and the noise. In the absence of this information, one has to proceed ‘blindly’ to recover the
source signals from their observed noisy mixtures.

Despite its signal-processing appearance, BSS is a problem in statistical modeling of data. In this context,
one wishes to describe the L' observed variables y;, which are generally correlated, in terms of a smaller set
of L unobserved variables z; that are mutually independent. The simplest such description is given by a
probabilistic linear model,

L

Y; = ZHij.’L'j + u; , =1, ...,LI R (1)
j=1



where y; depends on linear combinations of the x;’s with constant coefficients H;;; the probabilistic nature
of this dependence is modeled by the L' additive noise signals u;. In general, the statistician’s task is to
estimate H;; and x;. The latter are regarded as the independent ‘causes’ of the data in some abstract sense;
their relation to the actual physical causes is often highly non-trivial. In BSS, on the other hand, the actual
causes of the sensor signals y; are the source signals z; and the model (1), with H;; being the mixing matrix,
is known to be the correct description.

One might expect that, since linear models have been analyzed and applied extensively for many years,
the solution to the BSS problem can be found in some textbook or review article. However, this is not the
case. Consider, e.g., the close relation of (1) to the well-known factor analysis (FA) model (see Everitt 1984).
In the context of FA, the unobserved sources z; are termed ‘common factors’ (usually just ‘factors’), the
noise u; ‘specific factors’, and the mixing matrix elements H;; ‘factor loadings’. The factor loadings and noise
variances can be estimated from the data by, e.g., maximum likelihood (there exists an efficient expectation-
maximization algorithm for this purpose), leading to an optimal estimate of the factors. However, ordinary
FA cannot perform BSS. Its inadequacy stems from using a Gaussian model for the probability density p(z;)
of each factor. This seemingly technical point turns out to have important consequences, since it implies
that FA exploits only second-order statistics of the observed data to perform those estimates and hence, in
effect, does not require the factors to be mutually independent but merely uncorrelated. As a result, the
factors (and factor loading matrix) are not defined uniquely but only to within an arbitrary rotation, since
the likelihood function is rotation-invariant in factor space. Put in the context of BSS, the true sources and
mixing matrix cannot be distinguished from any rotation thereof when only second-order statistics are used.
More modern statistical analysis methods, such as projection pursuit (Friedman and Stuetzle 1981; Huber
1985) and generalized additive models (Hastie and Tibshirani 1990), do indeed use non-Gaussian densities
(modeled by non-linear functions of Gaussian variables), but the resulting models are quite restricted and
are not suitable for solving the BSS problem.

Most of the work in the field of BSS since its emergence in the mid '80s (see Jutten and Herault 1991;
Comon, Jutten and Herault 1991) aimed at a highly idealized version of the problem where the mixing is
square (L' = L), invertible, instantaneous and noiseless. This version is termed ‘independent component
analysis’ (ICA) (Comon 1994). A satisfactory solution for ICA was found only in the last few years (Bell
and Sejnowski 1995; Cardoso and Laheld 1996; Pham 1996; Pearlmutter and Parra 1997; Hyvérinen and
Oja 1997). Contrary to FA, algorithms for ICA employ non-Gaussian models of the source densities p(z;).
Consequently, the likelihood is no longer rotation-invariant and the maximum-likelihood estimate of the
mixing matrix is unique; for appropriately chosen p(z;) (see below) it is also correct.

Mixing in realistic situations, however, generally includes noise and different numbers of sources and
sensors. As the noise level increases, the performance of ICA algorithms deteriorates and the separation
quality decreases, as manifested by cross-talk and noisy outputs. More importantly, many situations have a
relatively small number of sensors but many sources, and one would like to lump the low-intensity sources
together and regard them as effective noise, while the separation focuses on the high-intensity ones. There
is no way to accomplish this using ICA methods.

Another important problem in ICA is determining the source density model. The ability to learn the
densities p(z;) from the observed data is crucial. However, existing algorithms usually employ a source
model that is either fixed or has only limited flexibility. When the actual source densities in the problem
are known in advance, this model can be tailored accordingly; otherwise, an inaccurate model often leads
to failed separation, since the global maximum of the likelihood shifts away from the one corresponding to
the correct mixing matrix. In principle, one can use a flexible parametric density model whose parameters
may also be estimated by maximum likelihood (Mackay 1996; Pearlmutter and Parra 1997). However, ICA
algorithms use gradient-ascent maximization methods, which result in rather slow learning of the density
parameters.

In this paper we present a novel unsupervised learning algorithm for blind separation of non-square,
noisy mixtures. The key to our approach lies in the introduction of a new probabilistic generative model,
termed the independent factor (IF) model, described schematically in Figure 1. This model is defined by
(1), associated with arbitrary non-Gaussian adaptive densities p(z;) for the factors. We define independent



factor analysis (IFA) as the reconstruction of the unobserved factors z; from the observed data y;. Hence,
performing IFA amounts to solving the BSS problem.

IFA is performed in two steps. The first consists of learning the IF model, parametrized by the mixing
matrix, noise covariance, and source density parameters, from the data. To make the model analytically
tractable while maintaining the ability to describe arbitrary sources, each source density is modeled by
a mixture of one-dimensional Gaussians. This enables us to derive an expectation-maximization (EM)
algorithm, given by (29,30), which performs maximum-likelihood estimation of all the parameters, the source
densities included.

Due to the presence of noise, the sources can be recovered from the sensor signals only approximately.
This is done in the second step of IFA using the posterior density of the sources given the data. Based on this
posterior, we derive two different source estimators which provide optimal source reconstructions using the
parameters learned in the first step. Both estimators, the first given by (36) and the second found iteratively
using (38), are non-linear but each satisfies a different optimality criterion.

As the number of sources increases, the E-step of this algorithm becomes increasingly computationally
expensive. For such cases we derive an approximate algorithm that is shown to be quite accurate. The ap-
proximation is based on the variational approach, first introduced in the context of feedforward probabilistic
networks by Saul and Jordan (1995).

Our TFA algorithm reduces to ordinary FA when the model sources become Gaussian, and performs
principal component analysis (PCA) when used in the zero-noise limit. An additional EM algorithm, derived
specifically for noiseless IFA, is also presented (64-66). A particular version of this algorithm, termed
‘Seesaw’, is composed of two alternating phases, as shown schematically in Figure 8: the first phase learns
the unmixing matrix while keeping the source densities fixed; the second phase freezes the unmixing matrix
and learns the source densities using EM. Its ability to learn the source densities from the data in an efficient
manner makes Seesaw a powerful extension of Bell and Sejnowski’s (1995) ICA algorithm, since it can
separate mixtures that ICA fails to separate.

IFA therefore generalizes and unifies ordinary FA, PCA and ICA and provides a new method for modeling
multi-variable data in terms of a small set of independent hidden variables. Furthermore, IFA amounts to
fitting those data to a mixture model of co-adaptive Gaussians (see Figure 3 (bottom right)), i.e., the
Gaussians cannot adapt independently but are strongly constrained to move and expand together.

This paper deals only with instantaneous mixing. Real-world mixing situations are generally not in-
stantaneous but include propagation delays and reverberations (described mathematically by convolutions
in place of matrix multiplication in (1)). A significant step towards solving the convolutive BSS problem
was taken by Attias and Schreiner (1998), who obtained a family of maximum likelihood-based learning
algorithms for separating noiseless convolutive mixtures; Torkkola (1996) and Lee et al. (1997) derived one
of those algorithms from information-maximization considerations. Algorithms for noisy convolutive mixing
can be derived using an extension of the methods described here and will be presented elsewhere.

This paper is organized as follows. Section 2 introduces the IF model. The EM algorithm for learning the
generative model parameters is presented in Section 3, and source reconstruction procedures are discussed
in section 4. The performance of the IFA algorithm is demonstrated by its application to noisy mixtures
of signals with arbitrary densities in Section 5. The factorized variational approximation of IFA is derived
and tested in Section 6. The EM algorithm for noiseless IFA and its Seesaw version are presented and
demonstrated in Section 7. Most derivations are relegated to Appendices A—C.

Notation

Throughout this paper, vectors are denoted by bold-faced lower-class letters and matrices by bold-faced
upper-class letters. Vector and matrix elements are not bold-faced. The inverse of a matrix A is denoted by
A~', and its transposition by AT (A}, = Aj;).

To denote ensemble averaging we use the operator E. Thus, if x(Y), t = 1,..., T are different observations



of the random vector x, then for any vector function F of x,

EF(x) = = 3 F(x®) . 2)

M|

The multi-variable Gaussian distribution for a random vector x with mean p and covariance X is denoted
by

G(x - 1, %) =| det(2r) |72 exp [- (x = )" B (x =) /2] , 3)

implying Ex = pu and ExxT = X + puu”.

2 The Independent Factor (IF) Generative Model

Independent factor analysis is a two-step method. The first step is concerned with the unsupervised learning
task of a generative model (Everitt 1984), named the independent factor (IF) model, which we introduce in
the following. Let y be an L' x 1 observed data vector. We wish to explain the correlated y; in terms of
L hidden variables z;, referred to as ‘factors’, that are mutually statistically independent. Specifically, the
data are modeled as dependent on linear combinations of the factors with constant coeflicients H;;, and an
additive L' x 1 random vector u makes this dependence non-deterministic:

y=Hx+u. (4)

In the language of BSS, the independent factors x are the unobserved source signals and the data y are
the observed sensor signals. The sources are mixed by the matrix H. The resulting mixtures are corrupted
by noise signals u originating in the sources, the mixing process (e.g., the propagation medium response),
or the sensor responses.

In order to produce a generative model for the probability density of the sensor signals p(y), we must
first specify the density of the sources and of the noise. We model the sources z; as L independent random
variables with arbitrary distributions p(z; | 6;), where the individual i-th source density is parametrized by
the parameter set 6;.

The noise is assumed to be Gaussian with mean zero and covariance matrix A, allowing correlations
between sensors; note that even in situations where the sensor noise signals are independent, correlations
may arise due to source noise or propagation noise. Hence

p(u) = G(u, A) . (5)

Equations (4-5) define the IF generative model, which is parametrized by the source parameters 8, mixing
matrix H, and noise covariance A. We denote the IF parameters collectively by

W = (H,A,6) . (6)

The resulting model sensor density is

p(y | W)

Il

/ dx p(y | %) p(x)
L

/ ax Gy — Hx, A) [[ploi00) )

i=1

where dx = [], dz;. The parameters W should be adapted to minimize an error function which measures
the distance between the model and observed sensor densities.



2.1 Source Model: Factorial Mixture of Gaussians

Although in principle p(y) (7) is a perfectly viable starting point and can be evaluated by numerical in-
tegration given a suitably chosen p(x;), this could become quite computationally intensive in practice. A
better strategy is to choose a parametric form for p(z;) which (i) is sufficiently general to model arbitrary
source densities, and (ii) allows performing the integral in (7) analytically. A form that satisfies both these
requirements is the mixture of Gaussians (MOG) model.

In this paper we shall describe the density of source i as a mixture of n; Gaussians ¢; = 1,...,n; with
means f; q;, variances v; q,, and mixing proportions w; g, :

p(zi | 0;) Z Wi, G(Ti = Wiygs> Vi) » 01 = {Wig> Biygi» Visai } - (8)

;=1

where ¢; runs over the Gaussians of source i. For this mixture to be normalized, the mixing proportions for
each source should sum up to unity: 3> wi,q = 1.

The parametric form (8) provides a probabilistic generative description of the sources in which the
different Gaussians play the role of hidden states. To generate the source signal z;, we first pick a state g;
with probability p(g;) = wi,g,, then draw a number z; from the corresponding Gaussian density p(z; | ¢;) =
g(IL', — Miygi» Viﬂ]i)'

Viewed in L-dimensional space, the joint source density p(x) formed by the product of the one-dimensional
MOG’s (8) is itself a MOG. Its collective hidden states

q= (41,---,(1L) (9)

consist of all possible combinations of the individual source states ¢;. As Figure 3 (upper right) illustrates
for L = 2, each state q corresponds to an L-dimensional Gaussian density whose mixing proportions wg,
mean p, and diagonal covariance matrix Vq are determined by those of the constituent source states,

Wq = Hwi,qi = Wi,y """ WLyqr > Hq = (Nl,qu---ap’L,QL) ’ Vq = dia'g (Vlﬂlla"'a VL,QL) . (10)

Hence we have
p(x|80)= Hp$,|9 qug(x—uq,Vq), (11)
q

where the Gaussians factorize, G(x — g, Vq) = [[; G(xi — pi,g;> Vi g;), and the sum over collective states q
(9) represents summing over all the individual source states, >, = >, ~=-> .

Note that, contrary to ordinary MOG, the Gaussians in (11) are not free to adapt independently but
are rather strongly constrained. Modifying the mean and variance of a single source state g; would result
in shifting a whole column of collective states q. Our source model is therefore a mixture of co-adaptive
Gaussians, termed ‘factorial MOG’. We point out that Hinton and Zemel (1994) proposed and studied a
related generative model, which differed from the present one in that all Gaussians had the same covariance;
an EM algorithm for their model was derived by Ghahramani (1995). Different forms of co-adaptive MOG
were used by Hinton et al. (1992) and by Bishop et al. (1998).

2.2 Sensor Model

The source model (11), combined by (4) with the noise model (5), leads to a two-step generative model of
the observed sensor signals. This model can be viewed as a hierarchical feedforward network with a visible
layer and two hidden layers, as shown in Figure 1. To generate sensor signals y,
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Figure 1: Feedforward network representation of the IF generative model. Each source signal z; is generated by an
independent nj-state MOG model (8). The sensor signals y; are generated from a Gaussian model (14) whose mean
depends linearly on the sources.

(i) Pick a unit ¢; for each source ¢ with probability

p(q) = wq (12)

from the top hidden layer of source states. This unit has a top-down generative connection with weight ; ;.
to each of the units j in the bottom hidden layer. When activated, it causes unit j to produce a sample
x; from a Gaussian density centered at p; ., with variance v; 4, ; the probability of generating a particular
source vector x in the bottom hidden layer is

p(x|q) =G(x—pq, Va) - (13)

(ii) Each unit j in the bottom hidden layer has a top-down generative connection with weight H;; to each
unit ¢ in the visible layer. Following the generation of x, unit ¢ produces a sample y; from a Gaussian density
centered at Y j H;;x;. In case of independent sensor noise, the variance of this density is A;;; generally the
noise is correlated across sensors and the probability for generating a particular sensor vector y in the visible
layer is

p(y | x) =G(y —Hx,A) . (14)

It is important to emphasize that our IF generative model is probabilistic: it describes the statistics of
the unobserved source and observed sensor signals, i.e., the densities p(x) and p(y), rather than the actual
signals x and y. This model is fully described by the joint density of the visible layer and the two hidden
layers,

p(a,x,y | W) =p(q) p(x | q) p(y | %) . (15)

Notice from (15) that, since the sensor signals depend on the sources but not on the source states, i.e.,
p(y | x,9) = p(y | x) (once x is produced, the identity of the state q that generated it becomes irrelevant),
the IF network layers form a top-down first-order Markov chain.

The generative model attributes a probability p(y) for each observed sensor data vector y. We are now
able to return to (7) and express p(y) in a closed form. From (15) we have

Py | W) Z/dxp plx |95ty %) = S pla) oty 9 (16)



where, thanks to the Gaussian forms (13,14), the integral over the sources in (16) can be performed analyt-
ically to yield

p(y | q) =G(y —Hp,, HVGH" +A). (17)

Thus, like the source density, our sensor density model is a co-adaptive (although not factorial) MOG, as is
illustrated in Figure 3 (bottom right). Changing one element of the mixing matrix would result in a rigid
rotation and scaling of a whole line of states. Learning the IF model therefore amounts to fitting the sensor
data by a mixture of co-adaptive Gaussians, then use them to deduce the model parameters.

3 Learning the IF Model

3.1 Error Function and Maximum Likelihood

To estimate the IF model parameters we first define an error function which measures the difference between
our model sensor density p(y | W) (16) and the observed one p°(y). The parameters W are then adapted
iteratively to minimize this error. We choose the Kullback-Leibler (KL) distance function (Cover and Thomas
1991), defined by

0 P°(y)
ew) = [ dy p7(y)1og L = ~Fllogaly | W)] - Hye (18)
where the operator E performs averaging over the observed y. As is well known, the KL distance £ is always
non-negative and vanishes when p(y) = p°(y).

The error (18) consists of two terms: the first is the negative log-likelihood of the observed sensor signals
given the model parameters W. The second term is the sensor entropy, which is independent of W and
will henceforth be dropped. Minimizing £ is thus equivalent to maximizing the likelihood of the data with
respect to the model.

The KL distance has an interesting relation also to the mean square point-by-point distance. To see it,
we define the relative error of p(y | W) with respect to the true density p°(y) by

p(y) —p°(y)
[ y = 19
) ) (19)
at each y, omitting the dependence on W. When p(y) in (18) is expressed in terms of e(y), we obtain
1
ew)=— [ dypr)loglt+ e~ 5 [ dv ) ). (20)

where the approximation loge = e —e?/2, valid in the limit of small e(y), was used. Hence, in the parameter
regime where the model p(y | W) is ‘near’ the observed density, minimizing £ amounts to minimizing the
mean square relative error of the model density. This property, however, has little computational significance.
A straightforward way to minimize the error (18) would be to use the gradient-descent method where,
starting from random values, the parameters are incremented at each iteration by a small step in the
direction of the gradient 0 /0W . However, this results in rather slow learning. Instead, we shall employ the
expectation-maximization approach to develop an efficient algorithm for learning the IF model.

3.2 An Expectation-Maximization Algorithm

Expectation-maximization (EM) (Dempster et al. 1977; Neal and Hinton 1998) is an iterative method to
maximize the log-likelihood of the observed data with respect to the parameters of the generative model
describing those data. It is obtained by noting that, in addition to the likelihood E[logp(y | W)] of the
observed sensor data (see (18)), one may consider the likelihood E[logp(y,x,q | W)] of the ‘complete’ data,



composed of both the observed and the ‘missing’ data, i.e., the unobserved source signals and states. For
each observed y, this complete-data likelihood as a function of x,q is a random variable. Each iteration
then consists of two steps:

(E) Calculate the expected value of the complete-data likelihood, given the observed data and the current
model. That is, calculate

FW', W) =-E[logp(a,x,y | W)] + Fu(W'), (21)

where, for each observed y, the average in the first term on the r.h.s. is taken over the unobserved x, q using
the source posterior p(x,q | y, W'); W' are the parameters obtained in the previous iteration, and Fg(W')
is the entropy of the posterior (see (27)). The result is then averaged over all the observed y. The second
term on the r.h.s is W-independent and has no effect on the following.

(M) Minimize F(W', W) (i.e., maximize the corresponding averaged likelihood) with respect to W to
obtain the new parameters:

W = arg min FW' w"). (22)
In the following we develop the EM algorithm for our IF model. First, we show that F (21) is bounded

from below by the error £ (18), following Neal and Hinton (1998). Dropping the average over the observed
y, we have

EW) = —logp(ylW)Z—logZ/dXP(q,x,.VIW)
< % [ ixrltaxiy) g pany =7, (23)

where the second line follows from Jensen’s inequality (Cover and Thomas 1991) and holds for any conditional
density p'. In EM, we choose p' to be the source posterior computed using the parameters from the previous
iteration,

p(a,x|y)=plax]|y,W'), (24)

which is obtained directly from (15) with W = W"'.
Hence, after the previous iteration we have an approximate error function F(W', W) which, due to the
Markov property (15) of the IF model, is obtained by adding up four terms,

EW)<FW' W)=Fy+Fp+Fr+Fu, (25)

to be defined shortly. A closer inspection reveals that, while they all depend on the model parameters W,
each of the first three terms involves only the parameters of a single layer (see Figure 1). Thus, Fy depends
only on the parameters H, A of the visible layer, whereas Fp and Fr depend on the parameters {f;,q;, Vi,q; }
and {w; g, } of the bottom and top hidden layers, respectively; note that they also depend on all the previous
parameters W’. From (15) and (23), the contribution of the different layers are given by

Fy(W HA) = - / dx p(x | 7, W') logp(y | %)

'7:B(WI7 {NiaQi7Vivq‘i}) = - Z Z Qz | y, W /dxz P T; | q,y, W ) logp(xi | (Iz') )

=1 q;=1

fT(WIa {wi,lh'}) - Z Z (Iz | y, W Ing(qz) , (26)

i=1 g;=1



and the last contribution is the negative entropy of the source posterior
FaW) =Y [ dxplax |y, W) logplax |y, ). (27)
q

To get Fp (second line in (26)) we used p(q | x)p(x | y) = p(a | y)p(x | @,¥), which can be obtained using
(15).

The EM procedure now follows by observing that (25) becomes an equality when W = W', thanks to
the choice (24). Hence, given the parameter values W' produced by the previous iteration, the E-step (21)
results in the approximate error coinciding with the true error, F(W',W') = E(W'). Next, we consider
F(W' W) and minimize it with respect to W. From (25), the new parameters obtained from the M-step
(22) satisfy

EW) < FW', W) <FW',W')=EW), (28)

proving that the current EM step does not increase the error.

The EM algorithm for learning the IF model parameters is derived from (25-26) in Appendix A, where
the new parameters W at each iteration are obtained in terms of the old ones W'. The learning rules for
the mixing matrix and noise covariance are given by

-1
H = Ey'|y) (BExx"|y)
A = Byy" -Ey("|y)H", (29)
whereas the rules for the source MOG parameters are

Ep(gi | y){zi | 4:,¥)

,qi

Ep(qi | y) ’
v = Pplal i lay)  a
o Ep(qi | y) bl
wig = Ep(gly)- (30)

Notation. (x| y) is an L x 1 vector denoting the conditional mean of the sources given the sensors; the
L x L matrix (xx? | y) is the source covariance conditioned on the sensors. Similarly, (z; | gi,y) denotes the
mean of sensor i conditioned on both the hidden state g; of this source and the observed sensors. p(g; | y)
is the probability of the state g; of source i conditioned on the sensors. The conditional averages are defined
in (76,78). Both the conditional averages and the conditional probabilities depend on the observed sensor
signals y and on the parameters W', and are computed during the E-step. Finally, the operator E performs
averaging over the observed y.

Scaling. In the BSS problem, the sources are defined only to within an order permutation and scaling.
This ambiguity is implied by (4): the effect of an arbitrary permutation of the sources can be cancelled by a
corresponding permutation of the columns of H, leaving the observed y unchanged. Similarly, scaling source
z; by a factor o; would not affect y if the j-th column of H is scaled by 1/0; at the same time. Put another
way, the error function cannot distinguish between the true H and a scaled and permuted version of it,
and thus possesses multiple continuous manifolds of global minima. Whereas each point on those manifolds
corresponds to a valid solution, their existence may delay convergence and cause numerical problems (e.g.,
H;; may acquire arbitrarily large values). To minimize the effect of such excessive freedom, we maintain the
variance of each source at unity by performing the following scaling transformation at each iteration:

[V

n; n;
2 2
g; = Z Wj,q; (Vj,g; + /‘j,qj) - (Z Wjg; Kja;)”

7;=1 2;=1
/'llj’QJ' Vjan
Bigg = =5 Vieg = 3, Hij = Hijoj. (31)
i j



This transformation amounts to scaling each source j by its standard deviation o; = /Ez} — (Ex;)* and

compensating the mixing matrix appropriately. It is easy to show that this scaling leaves the error function
unchanged.

3.3 Hierarchical Interpretation

The above EM algorithm can be given a natural interpretation in the context of our hierarchical generative
model (see Figure 1). From this point of view, it bears some resemblance to the mixture of experts algorithm
of Jordan and Jacobs (1994). Focusing first on the learning rules (30) for the top hidden layer parameters,
one notes their similarity to the usual EM rules for fitting a MOG model. To make the connection explicit
we rewrite the rules (30) on the left column below,

P E [dxi p(zi |y) [p(gi | 2:,y) 2] ., Epllz)azi
b E [dz; p(z; | y) [plai | zi,¥)] Ep(gi | @)
L _ EB[fdwip@ily) [plai]@iy) o] L2 e EBpalm)ai s
b E [dz; p(z; | y) [p(ai | z:,¥)] i E p(g; | ;) i
wia = B [ doip(os|y) bl | 5y) — Eplai| i), (32)

where to go from (30) to the left column of (32) we used p(¢; | y) = [ dz; p(zi,q; | y) and p(g; | y)(m(z;) |
¢,y) = [ dzi m(z;) p(zi,q: | y) (see (78)). Note that each p in (32) should be read as p'.

Shown on the right column of (32) are the standard EM rules for learning a one-dimensional MOG model
parametrized by p; q;, vi,q; and w; 4, for each source z;, assuming the source signals were directly observable.
A comparison with the square-bracketed expressions on the left column shows that the EM rules (30) for the
IF source parameters are precisely the rules for learning a separate MOG model for each source i, with the
actual z; replaced by all values z; that are possible given the observed sensor signals y, weighted by their
posterior p(z; | y).

The EM algorithm for learning the IF model can therefore be viewed hierarchically: the visible layer
learns a noisy linear model for the sensor data, parametrized by H and A. The hidden layers learn a
MOG model for each source. Since the actual sources are not available, all possible source signals are used,
weighted by their posterior given the observed data; this couples the visible and hidden layers since all the
IF parameters participate in computing that posterior.

3.4 Relation to Ordinary Factor Analysis

Ordinary factor analysis (FA) uses a generative model of independent Gaussian sources with zero mean and
unit variance, p(x;) = G(z;,1), mixed (see (4)) by a linear transformation with added Gaussian noise whose
covariance matrix A is diagonal. This is a special case of our IF model obtained when each source has a
single state (n; =1 in (8)). From (16,17), the resulting sensor density is

p(y | W) =G(y,HH" +A), (33)

since we now have only one collective source state q = (1,1,...,1) with wq = 1, py = 0, and V4 = I (see
(9-10)).

The invariance of FA under factor rotation mentioned in Section 1 is manifested in the FA model density
(33). For any L x L' matrix P whose rows are orthonormal (i.e., PPT = I — a rotation matrix), we can
define a new mixing matrix H' = HP. However, the density (33) does not discriminate between H' and the
true H since H'H' 7 = HH7, rendering FA unable to identify the true mixing matrix. Notice from (4) that
the factors corresponding to H' are obtained from the true sources by that rotation: x' = PTx. In contrast,
our IF model density (16,17) is, in general, not invariant under the transformation H — H'; the rotational
symmetry is broken by the MOG source model. Hence the true H can, in principle, be identified.
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We point out that for square mixing (L' = L) the symmetry of the FA density (33) is even larger: for an
arbitrary diagonal noise covariance A’, the transformation A — A’, H — H' = (HH” + A — A')'/?P leaves
(33) invariant. Hence not only the mixing but also the noise cannot be identified in this case.

The well-known EM algorithm for FA (Rubin and Thayer 1982) is obtained as a special case of our
IFA algorithm (29,30), by freezing the source parameters at their values under (33) and using only the
learning rules (29). Given the observed sensors y, the source posterior now becomes simply a Gaussian,
p(x|y) =G(x — p,X), whose covariance and data-dependent mean are given by

>=(HIAH+I) ', py)=THIA ly, (34)

rather than the MOG implied by (80-82). Consequently, the conditional source mean and covariance (84)

used in (29) become (x | y) = p(y) and (xx? | y) =X + p(y)p(y)?.

4 Recovering the Sources

Once the IF generative model parameters have been estimated, the sources can be reconstructed from the
sensor signals. A complete reconstruction is possible only when noise is absent and the mixing is invertible,
i.e., if A =0 and rank H > L; in this case, the sources are given by the pseudo-inverse of H via the linear
relation x = (H'H) 'H"y.

In general, however, an estimate %(y) of the sources must be found. There are many ways to obtain a
parametric estimator of an unobserved signal from data. In the following we discuss two of them, the least
mean squares (LMS) and maximum a-posteriori probability (MAP) source estimators. Both are non-linear
functions of the data, but each satisfies a different optimality criterion. It is easy to show that for Gaussian
sources, they both reduce to the same linear estimator of ordinary FA, given by %X(y) = p(y) in (34). For
non-Gaussian sources, however, the LMS and MAP estimators differ and neither has an a-priori advantage
over the other. For either choice, obtaining the source estimate {%X(y)} for a given sensor data set {y}
completes the IFA of these data.

4.1 LMS Estimator

As is well known, the optimal estimate in the least-square sense, i.e., that minimizes E(% — x)?, is given by
the conditional mean of the sources given the observed sensors,

R15(y) = x| y) = [ dxxplx |3, W), (35)

where p(x |y, W) = >, p(a | y)p(x | q,y) (see (80-82)) is the source posterior and depends on the generative
parameters. This conditional mean has already been calculated for the E-step of our EM algorithm; as shown
in Appendix A, it is given by a weighted sum of terms that are linear in the data y,

MS(y) = Y plaly) (Aqy+bg), (36)

qa

where Aq = ZgHTA !, bg = qV,'p,, and g is given in terms of the generative parameters in (81).
Notice that the weighting coefficients themselves depend non-linearly on the data via p(q | y) = p(y |
Q)p(@)/ >q Py | d')p(d’) and (12,17).

4.2 MAP Estimator
The MAP optimal estimator maximizes the source posterior p(x | y). For a given y, maximizing the posterior
is equivalent to maximizing the joint p(x,y) or its logarithm, hence

L
*MAP (y) = argmax (logp(y | x) + ) logp(xi)| - (37)

i=1

11



0.7 0.7 1 0.7
0.6 0.6 1 0.6
0.5 0.5 1 0.5
= 0.4 0.4 1 0.4
=
0.3 0.3 0.3
o.2r o.2r o.2r
O.1 0.1 O.1
—5 (o] 5 —5 5 —5 (o] 5
x1 x2 x3

Figure 2: Source density histograms (solid lines) and their MOG models learned by IFA (dashed lines). Each model
is a sum of three weighted Gaussian densities (dotted lines). Shown are bimodal (left) and uniform (middle) synthetic
signals and a real speech signal (right).

A simple way to compute this estimator is to maximize the quantity on the r.h.s. of (37) iteratively
using the method of gradient ascent, for each data vector y. After initialization, X(y) is incremented at each
iteration by

5% =nH"A Ny — H&) — né(%) , (38)

where 7 is the learning rate and ¢(x) is an L x 1 vector given by the logarithmic derivative of the source
density (8),

olag) = =8P S gy |y T e (39)

Ox; i

A good initialization is provided by the pseudo-inverse relation %(y) = (H'H) 'H”y. However, since the
posterior may have multiple maxima, several initial values should be used in order to identify the highest
maximum.

Notice that *MAF is a fixed point of the equation 6% = 0. This equation is non-linear, reflecting the
non-Gaussian nature of the source densities. A simple analysis shows that this fixed point is stable when
| det HTA™'H |>| [, ¢'(#M4F) |, and the equation can then be solved by iterating over % rather than using
the slower gradient ascent. For Gaussian sources with unit covariance, ¢(x) = x and the MAP estimator
reduces to the ordinary FA one p(y) (34).

5 IFA: Simulation Results

Here we demonstrate the performance of our EM algorithm algorithm for IFA on mixtures of sources cor-
rupted by Gaussian noise at different intensities. We used 5sec-long speech and music signals obtained from
commercial CD’s at the original sampling rate of 44.1kHz, that were down-sampled to f; = 8.82kHz, result-
ing in T' = 44100 sample points. These signals are characterized by peaky unimodal densities, as shown in
Figure 2 (right). We also used synthetic signals obtained by a random number generator. These signals had
arbitrary densities, two examples of which are shown in Figure 2 (left, middle).

All signals were scaled to have unit variance and mixed by a random L' x L mixing matrix H® with
varying number of sensors L'. L' white Gaussian signals with covariance matrix A° were added to these
mixtures. Different noise levels were used (see below). The learning rules (29,30) were iterated in batch
mode, starting from random parameter values.

In all our experiments, we modeled each source density by a n; = 3-state MOG, which provided a
sufficiently accurate description of the signals we used, as Figure 2 (dashed and dotted lines) shows. In
principle, prior knowledge of the source densities can be exploited by freezing the source parameters at
the values corresponding to a MOG fit to their densities, and learning only the mixing matrix and noise

12



Initial Final

Figure 3: IFA learns a co-adaptive MOG model of the data. Top: the joint density of sources x1,z2 (dots) whose
individual densities are shown in Figure 2. Bottom: the observed sensor density (dots) resulting from a linear 2 x 2
mixing of the sources contaminated by low noise. The MOG source model (11) is represented by ellipsoids centered
at the means p, of the source states; same for the corresponding MOG sensor model (16,17). Note that the mixing

affects a rigid rotation and scaling of the states. Starting from random source parameters (left), as well as random
mixing matrix noise covariance, IFA learns their actual values (right).

covariance, which would result in faster convergence. However, we allowed the source parameters to adapt
as well, starting from random values. Learning the source densities is illustrated in Figure 3.

Figure 4 (top, solid lines) shows the convergence of the estimated mixing matrix H towards the true one
HO, for L' = 3,8 mixtures of the L = 3 sources whose densities are histogrammed in Figure 2. Plotted are
the matrix elements of the product

J=HTH)'HTH. (40)

Notice that for the correct estimate H = H°® J becomes the unit matrix I. Recall that the effect of
source scaling is eliminated by (31); to prevent possible source permutations from affecting this measure, we
permuted the columns of H such that the largest element (in absolute value) in column i of J would be J;;.
Indeed, this product is shown to converge to I in both cases.

To observe the convergence of the estimated noise covariance matrix A towards the true one A°, we
measured the KL distance between the corresponding noise densities. Since both densities are Gaussian (see
(5)), it is easy to calculate this distance analytically:

G(u,A°)
G(u,A)

We recall that the KL distance is always non-negative; notice from (41) that K, = 0 when A = A°.
Differentiating with respect to A shows that this is the only minimum point. As shown in Figure 4 (bottom,
dashed line), K,, approaches zero in both cases.

The convergence of the estimated source densities p(x;) (8) was quantified by measuring their KL distance
from the true densities p°(z;). For this purpose, we first fitted a MOG model, p°(z;) = 3 w?  G(z; —

149 43 V24.), to each source i and obtained the parameters wf ., pu? ., v, for ¢ = 1,2,3. The KL distance

1 L 1
K, = /du G(u, A°) log = §Tr A7TA0 — 5~ ilog | det ATTA | . (41)
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Figure 4: Top: convergence of the mixing matrix H with L = 3 sources, for L' = 3 (left) and L' = 8 (right) sensors
and SNR = 5dB. Plotted are the matrix elements of J (40) (solid lines) against the EM step number. Bottom:
convergence of the noise and source densities. Plotted are the KL distance K, (41) between the estimated and true
noise densities (dashed line), and the KL distances K; (42) between the estimated source densities p(z;) and the true
ones (solid lines).

at each EM step was then estimated via

) T P°( (t))
K, = /d:z:z p( log ~ Zlog (t) , (42)

where p(x;) was computed using the parameters values wj,q;, li,q:, Vi,q; Obtained by IFA at that step; z ( )
denotes the value of source i at time point ¢. Figure 4 (bottom, solid lines) shows the convergence of K
towards zero for L' = 3, 8 sensors.

Figure 2 illustrates the accuracy of the source densities p(z;) learned by IFA. The histogram of the
three sources used in this experiment is compared to its MOG description, obtained by adding up the
corresponding 3 weighted Gaussians using the final IFA estimates of their parameters. The agreement is
very good, demonstrating that the IFA algorithm successfully learned the source densities.

Figure 5 examines more closely the precision of the IFA estimates as the noise level increases. The mixing
matrix error eg quantifies the distance of the final value of J (40) from I; we define it as the mean square
non-diagonal elements of J normalized by its mean square diagonal elements:

1 L 1 & B
— § 2 § : 2

i#£j=1

The signal-to-noise ratio (SNR) is obtained by noting that the signal level in sensor i is E(3_; H)z;)? =

> ;(HY)? (recall that Exx” = T), and the corresponding noise level is Fu; = AJ;. Averaging over the
sensors, we get

L’ L

SNR = %Z > (HY)| /AY . (44)

i=1 | j=1
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Figure 5: Top: estimate errors of the mixing matrix, em (43) (solid line), and noise covariance, K, (41) (dashed
line), against the signal-to-noise ratio (44), for L' = 3 (left) and L' = 8 (right). For reference, the errors of the ICA
estimate of the mixing matrix (dotted line) are also plotted. Bottom: estimate errors K; (42) of the source densities.
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We plot the mixing matrix error against the SNR in Figure 5 (top, solid line), both measured in dB
(i-e., 10log;q €m vs. 10log;, SNR), for L' = 3,8 sensors. For reference, we also plot the error of the ICA
(Bell and Sejnowski 1995) estimate of the mixing matrix (top, dotted line). Since ICA is formulated for
the square (L' = L) noiseless case, we employed a two-step procedure: (i) the first L principal components
(PC’s) y1 = PTy of the sensor data y are obtained; (ii) ICA is applied to yield */4 = Gy;. The resulting
estimate of the mixing matrix is then H/¢4 = P;G~'. Notice that this procedure is exact for zero noise,
since in that case the first L PC’s are the only non-zero ones and the problem reduces to one of square
noiseless mixing, described by y; = P1Hx (see also the discussion at the end of Section 7.1).

Also plotted in Figure 5 is the error in the estimated noise covariance A (top, dashed line), given by
the KL distance K,, (41) for the final value of A. (Measuring the KL distance in dB is suggested by its
mean-square-error interpretation (20)). Figure 5 (bottom) shows the estimate errors of the source densities
p(x;), given by their KL distance (42) from the true densities after the IFA was completed.

As expected, these errors decrease with increasing SNR, and also with increasing L'. The noise error K,
forms an exception, however, by showing a slight increase with the SNR, reflecting the fact that a lower
noise level is harder to estimate to a given precision. In general, convergence is faster for larger L'.

We conclude that the estimation errors for the IF model parameters are quite small, usually falling in
the range of 20 — 40dB and never larger than 15dB as long as the noise level is not higher than the signal
level (SNR > 0dB). Similar results were obtained in other simulations we performed. The small values of the
estimate errors suggest that those errors originate from the finite sample size, rather than from convergence
to undesired local minima.

Finally, we studied how the noise level affects the separation performance, as measured by the quality
of source reconstructions obtained from %S (36) and *MAF (38). We quantified it by the mean square
reconstruction error €"¢°, which measures how close the reconstructed sources are to the original ones. This
error is composed of two components, one arising from the presence of noise and the other from interference
of the other sources (‘cross-talk’); the additional component arising from IF parameter estimation errors is
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Figure 6: Source reconstruction quality with L = 3 sources for L' = 3 (left) and L' = 8 (right) sensors. Plotted are
the reconstruction error €"°® (top) and the cross-talk level ¢**%* (45) (bottom) vs. signal-to-noise ratio, for the LMS
(solid lines), MAP (dashed lines), and ICA (dotted lines) estimators.

negligible in comparison. The amount of cross-talk is measured by e®t%/k:
1 L 1 L
_ N 2 talk _ N
€ = z ZIE(.Z'z — .CL',) y MM = 12— L i;ﬁzl | E.’EilL‘j | - (45)
1= ]:

Note that for zero noise and perfect separation (£; = z;), both quantities approach zero in the infinite sample
limit.

The reconstruction error (which is normalized since Ez? = 1) and the cross-talk level are plotted in
Figure 6 against the SNR for both the LMS (solid lines) and MAP (dashed lines) source estimators. For
reference, we also plot the ICA results (dotted lines). As expected, €7 and e***!¥ decrease with increasing
SNR and are significantly higher for ICA. Notice that the LMS reconstruction error is always lower than the
MAP one, since it is derived by demanding that it minimizes precisely €"¢¢. In contrast, the MAP estimator
has a lower cross-talk level.

6 IFA with Many Sources: The Factorized Variational Approxi-
mation

Whereas the EM algorithm (29,30) is exact and all the required calculations can be done analytically, it
becomes intractable as the number of sources in the IF model increases. This is because the conditional
means computed in the E-step (84-86) involve summing over all [], n; possible configurations of the source
states, i.e., g = . 2 4, ' 2o, » Whose number grows exponentially with the number of sources. As long
as we focus on separating a small number L of sources (treating the rest as noise) and describe each source
by a small number n; of states, the E-step is tractable, but separating, for example, L = 13 sources with
n; = 3 states each would involve 313 &~ 1.6 x 108-element sums at each iteration.

The intractability of exact learning is, of course, not a problem unique to the IF model but is shared
by many probabilistic models. In general, approximations must be made. A suitable starting point for
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approximations is the function F (23), which is bounded from below by the exact error £ for an arbitrary
p.

The density p' is a posterior over the hidden variables of our generative model, given the values of the
visible variables. The root of the intractability of EM is the choice (24) of p’ as the ezact posterior, which is
derived from p via Bayes’ rule and is parametrized by the generative parameters . Several approximation
schemes were proposed (Hinton et al. 1995; Dayan et al. 1995; Saul and Jordan 1995; Saul et al. 1996;
Ghahramani and Jordan 1997) where p’ has a form that generally differs from that of the exact posterior
and has its own set of parameters 7, which are learned separately from W by an appropriate procedure. Of
crucial significance is the functional form of p’, which should be chosen so as to make the E-step tractable,
while still providing a reasonable approximation of the exact posterior. The parameters 7 are then optimized
to minimize the distance between p’ and the exact posterior.

In the case of the IF model, we consider the function

p(q,x,y | W)

p(q,x|y,T) 2 W), (46)

Frw) ==Y / dx p'(q,x | y,7) log
q

where averaging over the data is implied. We shall use a variational approach, first formulated in the context
of feedforward probabilistic models by Saul and Jordan (1995). Given the chosen form of the posterior p’
(see below), F (46) will be minimized iteratively with respect to both W and the variational parameters 7.

This minimization leads to the following approximate EM algorithm for IFA, which we derive in the
remaining part of this section. Assume that the previous iteration produced W’. The E-step of the current
iteration consists of determining the values of 7 in terms of W' by solving a pair of coupled ‘mean-field’
equations (53,54). It is straightforward to show that this step minimizes the KL distance between the
variational and exact posteriors, K L[p'(q,x | ¥,T),p(q,x | y, W')]. In fact, this distance equals the difference
F(r,W'") — E(W'). Hence, this E-step approximates the exact one in which this distance actually vanishes.

Once the variational parameters have been determined, the new generative parameters W are obtained
in the M-step using (29,30), where the conditional source means can be readily computed in terms of 7.

6.1 Factorized Posterior

We begin with the observation that, whereas the sources in the IF model are independent, the sources
conditioned on a data vector are correlated. This is clear from the fact that the conditional source correlation
matrix (xx! | q,y) (83) is non-diagonal. More generally, the joint source posterior density p(q,x | y) given
by (80,82) does not factorize, i.e., cannot be expressed as a product over the posterior densities of the
individual sources.

In the factorized variational approximation we assume that even when conditioned on a data vector,
the sources are independent. Our approximate posterior source density is defined as follows. Given a data
vector y, the source z; at state g; is described by a Gaussian distribution with a y-dependent mean ; q4;
and variance &; 4;, weighted by a mixing proportion k; ;. The posterior is defined simply by the product

pI(Q;X | y, T H Et,ql g [xz "/’z’,qi (Y);Ei,q;] ) Ti = {Hi,qia'(/}i,qnfi,q;} . (47)

As alluded to by (47), the variances &; 4, will turn out to be y-independent.
To gain some insight into the approximation (47), notice first that it implies a MOG form for the posterior
of T,

xz | y;Tz Z Hz,q, ’(/}z,(h( )5§i,Qi) ) (48)

gi=1

which is in complete analogy with its prior (8). Thus, conditioning the sources on the data is approximated
simply by allowing the variational parameters to depend on y. Next, compare (47) to the exact posterior
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p(a,x | y,W) (80,82). The latter also implies a MOG form for p(z; | y), but one that differs from (47);
and in contrast with our approximate posterior, the exact one implies a MOG form for p(z; | ¢;,y) as well,
reflecting the fact that the source states and signals are all correlated given the data.

Therefore, the approximation (47) can be viewed as the result of shifting the source prior towards the
true posterior for each data vector, with the variational parameters 7 assuming the shifted values of the
source parameters 8. Whereas this shift, of course, cannot capture correlations between the sources, it can
be optimized to allow (47) to best approximate the true posterior while maintaining a factorized form. A
procedure for determining the optimal values of 7 is derived in the next section.

The factorized posterior (47) is advantageous since it facilitates performing the E-step calculations in
polynomial time. Once the variational parameters have been determined, the data-conditioned mean and
covariance of the sources, required for the EM learning rule (29) are

Uz
(i ly) = Z Kiyqi Viygi »

;=1
g

@ y) = D kel +&ia), (@i |Y) = Kigikjg; VigiVia; » (49)
g;=1 qiq;

whereas those required for the rules (30), which are further conditioned on the source states, are given by

(G |Y) =Kig > (@il aY) =%ig, (7 |6y) =0, + & - (50)

Recovering the sources. In Section 4, the LMS (35,36) and MAP (37,38) source estimators were
given for exact IFA. Notice that, being part of the E-step, computing the LMS estimator exactly quickly
becomes intractable as the number of sources increases. In the variational approximation it is replaced by
#EMS(y) = (z; | y) (49), which depends on the variational parameters and avoids summing over all source
state configurations. In contrast, the MAP estimator remains unchanged (but the parameters W on which
it depends are now learned by variational IFA); note that its computational cost is only weakly dependent
on L.

6.2 Mean-Field Equations

For fixed T, the learning rules for W (29,30) follow from F (7, W) (46) by solving the equations F /0W = 0.
These equations are linear, as is evident from the gradients given in Appendix A.2; and their solution
W = W(r) is given in closed form.

The learning rules for 7 are similarly derived by fixing W = W' and solving 0F /0T = 0. Unfortunately,
examining the gradients given in Appendix B shows that these equations are non-linear and must be solved
numerically. We choose to find their solution 7 = 7(W') by iteration.

Define the L x L matrix H by

H=HTA'H. (51)

The equation for the variances ; 4, does not involve y and can easily be solved:
_ 1.,
igi = (His + —)7" . (52)
Vig;

The means ¢; 4, (y) and mixing proportions k; g4 (y) are obtained by iterating the following mean-field
equations for each data vector y:

.
i 1 B -
D> Hijhijgsa; + 6 Yig = HTATy); + l}j’—q : (53)
j#i gi=1 2,94 2,q:
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1 2 1 .
log ki g, = logwi g, + 2 (IogEZqi + —’q’> -5 (log Vie+ =2 | +z=aig +2, (54)

gidh 1,q;

where the z; are Lagrange multipliers that enforce the normalization conditions q: ki, = 1. Note that
Eq. (53) depends non-linearly on y due to the non-linear y-dependence of &;,g;.

To solve these equations, we first initialize kjq, = wi ;. Eq. (53) is a linear (3°, n;) x (3, n;) system
and can be solved for v; 4, using standard methods. The new k; 4, are then obtained from (54) via

e%i.q;

QXiqh "
1
Zq; e

These values are substituted back into (53) and the procedure is repeated until convergence.

Data-independent approximation. A simpler approximation results from setting &; 4, (y) = w; 4, for
all data vectors y. The means 1); ,, can then be obtained from (53) in a single iteration for all data vectors
at once, since this equation becomes linear in y. This approximation is much less expensive computationally,
with a corresponding reduction in accuracy as shown below.

(55)

Ki,qs =

6.3 Variational IFA: Simulation Results

Whereas the factorized form of the true posterior (47) and its data-independent simplification are not exact,
the mean-field equations optimize the variational parameters T to make the approximate posterior as accurate
as possible. Here we assess the quality of this approximation.

First, we studied the accuracy of the approximate error function F (46). For this purpose we considered
a small data set with 100 L' x 1 vectors y generated independently from a Gaussian distribution. The
approximate log-likelihood —F (7, W) of these data were compared to the exact log-likelihood —& (W) (46),
with respect to 5000 IF models with random parameters W. Each realization of W was obtained by sampling
the parameters from uniform densities defined over the appropriate intervals, followed by scaling the source
parameters according to (31). In the case of the mixing proportions, w;, were sampled and w;, were
obtained via (89). n; = 3-state MOG densities were used. The relative error in the log-likelihood

dike — S, W)

sy ! (56)

was then computed for the factorized and data-independent approximations. Its histogram is displayed in
Figure 7 for the case L' = 5, with L = 3 (left) and L = 4 (middle) sources.

In these examples, as well as in other simulations we performed, the mean error in the factorized approx-
imation is under 3%. The data-independent approximation, as expected, is less accurate and increases the
mean error above 8%.

Next, we investigated whether the variational IFA algorithm learns appropriate values for the IF model
parameters W. The answer is quantified below in terms of the resulting reconstruction error. 5sec-long
source signals, sampled from different densities (like those displayed in Figure 2) at a rate of 8.82kHz, were
generated. Noisy linear mixtures of these sources were used as data for the exact IFA algorithm and to
its approximations. After learning, the source signals were reconstructed from the data by the LMS source
estimator (see the discussion at the end of Section 6.1). For each data vector, the reconstruction error €"¢°
(45) was computed. The histograms of 10log;, €% (dB units) for the exact IFA and its approximations
in a case with L' = 5,L = 4, SNR=10dB are displayed in Figure 7 (right). For reference, the ICA error
histogram in this case is also plotted.

Note that the variational histogram is very close to the exact one, whereas the data-independent histogram
has a larger mean error. The ICA mean error is the largest, consistent with the results of Figure 6 (top).

We conclude that the factorized variational approximation of IFA is quite accurate. Of course, the real
test is in its application to cases with large numbers of sources where exact IFA can no longer be used. In
addition, other variational approximations can also be defined. A thorough assessment of the factorial and
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Figure 7: Left, middle: histogram of the relative error in the log-likelihood €'**¢ (56) of 100 random data vectors,
for the factorized variational approximation (dashed line; mean error = 0.021 (left), 0.025 (middle)) and its data-
independent simplification (dashed-dotted line; mean = 0.082, 0.084). The likelihoods were computed with respect to
5000 random IF model parameters with L' = 5 sensors and L = 3 (left) and L = 4 (middle) sources. Right: histogram
of the reconstruction error €"*° (45) at SNR=10dB for exact IFA (solid line; mean = —10.2dB), the factorized (dashed
line; mean = —10.1dB) and data-independent (dashed-dotted line; mean = —8.9dB) variational approximations, and
ICA (dotted line; mean = —3.66dB). The LMS source estimator was used.

other variational approximations and their applications is somewhat beyond the scope of the present paper
and will be published separately.

7 Noiseless TFA

We now consider the IF model (4) in the noiseless case A = 0. Here the sensor data depend deterministically
on the sources,

y = Hx, (57)

hence once the mixing matrix H is found, the latter can be recovered exactly (rather than estimated) from
the observed data using the pseudo-inverse of H via

x=(H"H)"'H'y, (58)

which reduces to x = H™ly for square invertible mixing. Hence, vanishing noise level results in a linear
source estimator which is independent of the source parameters.

One might expect that our EM algorithm (29,30) for the noisy case can also be applied to noiseless
mixing, with the only consequence being that the noise covariance A would acquire very small values. This,
however, is not the case, as we shall show below. It turns out that in the zero-noise limit, that algorithm
actually performs principal component analysis (PCA); consequently, for low noise, convergence from the
PCA to IFA solution is very slow. The root of the problem is that in the noiseless case we have only one
type of ‘missing data’, namely the source states q; the source signals x are no longer missing, being given
directly by the observed sensors via (58). We shall therefore proceed to derive an EM algorithm specifically
for this case. This algorithm will turn out to be a powerful extension of Bell and Sejnowski’s (1995) ICA
algorithm.

7.1 An Expectation-Maximization Algorithm
We first focus on the square invertible mixing (L' = L, rank H = L), and write (4) as
x =Gy, (59)

where the unmixing (separating) matrix G is given by H~! with its columns possibly scaled and permuted.
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Unlike the noisy case, here there is only one type of ‘missing data’, namely the source states q, since
the stochastic dependence of the sensor data on the sources becomes deterministic. Hence, the conditional
density p(y | x) (14) must be replaced by p(y) =| det G | p(x) as implied by (59). Together with the factorial
MOG model for the sources x (11), the error function (23) becomes

EW) = —logp(y | W)= —log|detG | —logp(x | W)

p(x,q | W)
< —log|detG | — x,W') log ——=1 "7
< g | |=>" pla| ) 8 a7

qa

(60)

As in the noisy case (25), we have obtained an approximated error F (W', W) that is bounded from below
by the true error, and is given by a sum over the individual layer contributions (see Figure 1),

EW)YSFW'W)=Fy+Fp+Fr+Fm. (61)

Here, however, the contributions of the visible and bottom hidden layers both depend on the visible layer
parameters G,

Fy(W',G) = —log|detG |,
L n;
fB(WIJ G, {:U’i,qw’/i,m}) = - Z Z p(qi | Ti, WI) logp(x,- | qi) )
i=1 ¢;=1
L n;
FrW, G {wig}) = =S pla | 2, W) logp(a:) , (62)
i=1 ¢;=1

whereas the top layer contribution remains separated (compare with (26), noting that p(q | y) = p(q | x)
due to (59)). The entropy term

Fu(W') = _pla|xW') logp(a | x, W) (63)

q

is W-independent. We point out that the complete form of expressions (62) includes replacing x by Gy and
averaging over the observed y.

The EM learning algorithm for the IF model parameters is derived in Appendix C. A difficulty arises
from the fact that the M-step equation 0F/0G = 0, whose solution is the new value G in terms of the
parameters W' obtained at the previous EM step, is non-linear and cannot be solved analytically. Instead
we solve it iteratively, so that each EM step W' — W is composed of a sequence of iterations on W with
W' held fixed.

The noiseless IFA learning rule for the separating matrix is given by

6G =G —nE¢' (x)xT G, (64)

where 17 > 0 determines the learning rate and its value should be set empirically. ¢'(x) is an L x 1 vector
which depends on the posterior p'(¢; | z;) = p(q;i | =i, W') (95) computed using the parameters from the
previous iteration; its i-th coordinate is given by a weighted sum over the states g¢; of source 1,

g
Ti— Wi,q
¢'(a) = Y plai | @) D (65)

qi=1 s

The rules for the source MOG parameters are

Ep'(qi | i)z

:u“l,(h' - Ep'(l], | xl) )
Vigi = Ep'(a: | Z‘z)_wzz — Mg s
’ Ep'(gi @) 70"
wig, = Ep'(gi|z). (66)
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Recall that x is linearly related to y and the operator E averages over the observed y.

The noiseless IFA learning rules (64-66) should be used as follows. Having obtained the parameters W'
in the previous EM step, the new step starts with computing the posterior p'(g; | ;) and setting the initial
values of the new parameters W to W', except for w; 4, which can be set to its final value Ep'(g; | ;). Then
a sequence of iterations begins, where each iteration consists of
(i) computing the sources by x = Gy using the current G;

(ii) computing the new p; g, ;4 from (66) using the sources obtained in (i);
(iii) computing the new G from (64,65) using the sources obtained in (i) and the means and variances
obtained in (ii).

The iterations continue until some convergence criterion is satisfied; note that during this process, both
x and W change but p'(g; | z;) are frozen. Achieving convergence completes the current EM step; the next
step starts with updating those posteriors.

We recognize the learning rules for the source densities (66) as precisely the standard EM rules for
learning a separate MOG model for each source i, shown on the right column of (32). Hence, our noiseless
IFA algorithm combines separating the sources, by learning G using the rule (64), with simultaneously
learning their densities by EM-MOG. These two processes are coupled by the priors p'(g; | z;). We shall
show in the next section that the two can decouple, and consequently the separating matrix rule (64) becomes
Bell and Sejnowski’s (1995) ICA rule, producing the algorithm shown schematically in Figure 8.

We also point out that the MOG learning rules for the noiseless case (66) can be obtained from those for
the noisy case (30) by replacing the conditional source means (z; | ¢;,y) by z; = >_; Gi;y;, and replacing
the source state posteriors p(g; | ¥) by p(¢; | ;). Both changes arise from the vanishing noise level which
makes the source-sensor dependence deterministic.

Scaling. As in the noisy case (31), noiseless IFA is augmented by the following scaling transformation
at each iteration:

n; ng
2 _ . . 2 . 3 2
0; - § : Wi,q; (Vl,Qi + /‘i,q,-) - ( E wl,th’/"l,qz') ’
q

=1 =1
Mi,g; Vi,gi 1
Pig = =5 Vig ™5, G = —Gi (67)
K3 1 K3

More sensors than sources. The noiseless IFA algorithm given above assumes that H is a square
invertible L x L mixing matrix. The more general case of an L' X L mixing with L' > L can be treated as
follows.

We start with the observation that in this case, the L' x L' sensor covariance matrix Cy = Eyy” is of
rank L. Let the columns of P contain the eigenvectors of Cy, so that PTC,P = D is diagonal. Then Py
are the I’ principal components of the sensor data, and only L of them are non-zero. The latter are denoted
by y1 = PTy, where P; is formed by those columns of P corresponding to non-zero eigenvalues.

The algorithm (64-66) should now be applied to y; to find an L x L separating matrix, denoted Gj.
Finally, the L x L' separating matrix G required for recovering the sources from sensors via (59) is simply

It remains to find Py. This can be done using matrix diagonalization methods. Alternatively, observing
that its columns are not required to be the first L eigenvectors of C, but only to span the same subspace,
the principal component analysis learning rule (74) (with H replaced by P;) may be used for this purpose.

7.2 Generalized EM and the Relation to Independent Component Analysis

Whereas the procedure described above for using the noiseless IFA rules (64-66) is a strictly EM algorithm
(for a sufficiently small ), it is also possible to use them in a different manner. An alternative procedure
can be defined by making either or both of the following changes: (i) complete each EM step and update
the posteriors p'(g; | z;) after some fixed number S of iterations, regardless of whether convergence has been
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Figure 8: The Seesaw GEM algorithm for noiseless IFA.

achieved; (ii) for a given EM step, select some parameters from the set W and freeze them during that step,
while updating the rest; the choice of frozen parameters may vary from one step to the next.

Any procedure that incorporates (i) or (ii) does not minimize the approximate error F at each M-step
(unless S is sufficiently large), but merely reduces it. Of course, the EM convergence proof remains valid in
this case. Such a procedure is termed a ‘generalized EM’ (GEM) algorithm (Dempster et al. 1977; Neal and
Hinton 1998). Clearly, there are many possible GEM versions of noiseless IFA. Two particular versions are
defined below:

Chase: obtained from the EM version simply by updating the posteriors at each iteration. Each GEM
step consists of
(i) a single iteration of the separating matrix rule (64);

(i) a single iteration of the MOG rules (66);
(iii) updating the posteriors p'(g; | z;) using the new parameter values.
Hence, the source densities follow G step by step.

Seesaw: obtained by breaking the EM version into two phases and alternating between them:

(i) freeze the MOG parameters; each GEM step consists of a single iteration of the separating matrix rule
(64), followed by updating the posteriors using the new value of G;

(ii) freeze the separating matrix; each GEM step consists of a single iteration of the MOG rule (66), followed
by updating the posteriors using the new values of the MOG parameters.

The sequence of steps in each phase terminates after making S steps or upon satisfying a convergence
criterion. Hence, we switch back and forth between learning G and learning the source densities.

Both the Chase and Seesaw GEM algorithms were found to converge faster than the original EM one.
Notice that both require updating the posteriors at each step; this operation is not computationally expensive
since each source posterior p(g; | ;) (95) is computed individually and requires summing only over its own
n; states, making the total cost linearly dependent on L. In our noisy IFA algorithm, in contrast, updating
the source state posteriors p(q | y) (82) requires summing over the [, n; collective source states q, and the
total cost is exponential in L.

We now show that Seesaw combines two well-known algorithms in an intuitively appealing manner. Since
the source density learning rules (66) are the EM rules for fitting an MOG model to each source, as discussed
in the previous section, the second phase of Seesaw is equivalent to EM-MOG. It will be shown below that
its first phase is equivalent to Bell and Sejnowski’s (1995) independent component analysis (ICA) algorithm,
with their sigmoidal non-linearity replaced by a function related to our MOG source densities. Therefore,
Seesaw amounts to learning G;; by applying ICA to the observed sensors y; while the densities p(z;) are
kept fixed, then fixing G;; and learning the new p(x;) by applying EM-MOG to the reconstructed sources
EDY j Gijy;j, and repeat. This algorithm described schematically in Figure 8.

In the context of BSS, the noiseless IFA problem for an equal number of sensors and sources had already
been formulated before as the problem of ICA by Comon (1994). An efficient ICA algorithm was first
proposed by Bell and Sejnowski (1995) from an information-maximization viewpoint; it was soon observed
(Mackay 1996; Pearlmutter and Parra 1997; Cardoso 1997) that this algorithm was, in fact, performing a
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maximum-likelihood (or, equivalently, minimum KL distance) estimation of the separating matrix using a
generative model of linearly mixed sources with non-Gaussian densities. In ICA, these densities are fixed
throughout.

The derivation of ICA, like that of our noiseless IFA algorithm, starts from the KL error function (W)
(60). However, rather than approximating it, ICA minimizes the exact error by the steepest descent method
using its gradient 9 /0G = —(GT) "1+ (x)yT, where ¢(x) is an L x 1 vector whose i-th coordinate is related
to the density p(z;) of source i via p(z;) = —0logp(x;)/0z;. The separating matrix G is incremented at
each iteration in the direction of the relative gradient (Cardoso and Laheld 1996; Amari et al. 1996; Mackay
1996) of £(W) by §G = —n(0€/0G)GT G, resulting in the learning rule

0G =1G —nEp(x)xT G, (68)

where the sources are computed from the sensors at each iteration via x = Gy.

Now, the ICA rule (68) has the form of our noiseless IFA separating matrix rule (64) with ¢(x;) (65)
replaced by ¢(x;) defined above. Moreover, whereas the original Bell and Sejnowski (1995) algorithm used
the source densities p(z;) = cosh™2(z;), it can be shown that using our MOG form for p(z;) (8) produces

n;

p(@) = Y plas | o) DL (69)

gi=1 ,qi

which has the same form as ¢(z;) (65); they become identical, p(z;) = ¢(x;), when noiseless TFA is used
with the source state posteriors updated at each iteration (S = 1). We therefore conclude that the first
phase of Seesaw is equivalent to ICA.

We remark that, although ICA can sometime accomplish separation using an inaccurate source density
model (e.g., speech signals with a Laplacian density p(z;) ~ e~%i are successfully separated using the model
p(x;) = cosh™2(z;)), model inaccuracies often lead to failure. For example, a mixtures of negative-kurtosis
signals (e.g., with a uniform distribution) could not be separated using the cosh™ model whose kurtosis is
positive. Thus, when the densities of the sources at hand are not known in advance, the algorithm’s ability
to learn them becomes crucial.

A parametric source model can, in principle, be directly incorporated into ICA (Mackay 1996; Pearlmutter
and Parra 1997) by deriving gradient-descent learning rules for the its parameters 6; via 66; = —no&/d6;,
in addition to the rule for G. Unfortunately, the resulting learning rate is quite low, as is also the case
when non-parametric density estimation methods are used (Pham 1996). Alternatively, the source densities
may be approximated using cumulant methods such as the Edgeworth or Gram-Charlier expansions (Comon
1994; Amari et al. 1996; Cardoso and Laheld 1996); this approach produces algorithms that are less robust
since the approximations are not true probability densities, being non-normalizable and sometimes negative.

In contrast, our noiseless IFA algorithm, and in particular its Seesaw GEM version, resolves these prob-
lems by combining ICA with source density learning rules in a manner that exploits the efficiency offered by
the EM technique.

7.3 Noiseless IFA: Simulation Results

In this section we demonstrate and compare the performance of the Chase and Seesaw GEM algorithms on
noiseless mixtures of L = 3 sources. We used 5sec-long speech and music signals obtained from commercial
CD’s, as well as synthetic signals produced by a random number generator, at sampling rate of f; = 8.82kHz.
The source signal densities used in the following example are shown in Figure 2. Those signals were scaled
to unit variance and mixed by a random L x L mixing matrix H°. The learning rules (64-66), used in
the manner required by either the Chase or Seesaw procedures, were iterated in batch mode, starting from
random parameter values. We used a fixed learning rate n = 0.05.

Figure 9 shows the convergence of the estimated separating matrix G (left) and the source densities
p(x;) (right) for Chase (top) and Seesaw (bottom). The distance of G™! from the true mixing matrix H° is
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Figure 9: Top: convergence of the separating matrix G (left) and the source densities p(z;) (right) for the Chase
algorithm with L = 3 sources. For G we plot the matrix elements of J (70) against GEM step number, whereas for
p(x;) we plot their KL distance K; (42) from the true densities. Bottom: same for the Seesaw algorithm.

quantified by the matrix elements of
J=GH°. (70)

Notice that for the correct estimate G=! = H°, J becomes the unit matrix I. Recall that the effect of
source scaling is eliminated by (67); to prevent possible source permutations from affecting this measure,
we permuted the columns of G such that the largest element (in absolute value) in column 7 of J would be
Ji;- Indeed, this product is shown to converge to I in both cases. For the source densities, we plot their KL
distances K; (42) from the true densities p°(z;), which approach zero as the learning proceeds. Notice that
Seesaw required a smaller number of steps to converge; similar results were observed in other simulations we
performed.

Seesaw was used in the following manner: after initializing the parameters, the MOG parameters were
frozen and phase (i) proceeded for S = 100 iterations on G. Then G was frozen (except for the scaling (67)),
and phase (ii) proceeded until the maximal relative increment of the MOG parameters decreased below
5 x 10~%. This phase alternation is manifested in Figure 9 by K; being constant as J changes and vice versa.
In particular, the upward jump of one of the elements of J after S = 100 iterations is caused by the scaling
(67), which is performed only in phase (ii).

To demonstrate the advantage of noiseless IFA over Bell and Sejnowski’s (1995) ICA, we applied both
algorithms to a mixture of L = 2 sources whose densities are plotted in Figure 10 (left). The Seesaw version
of IFA was used. After learning, the recovered sources were obtained; their joint densities are displayed in
Figure 10 for IFA (middle) and ICA (right). The sources recovered by ICA are clearly correlated, reflecting
the fact that this algorithm uses a non-adaptive source density model that is unsuitable for the present case.

7.4 Relation to Principal Component Analysis

As mentioned at the beginning of this section, the EM algorithm for IFA presented in Section 3.2 fails to
identify the mixing matrix H in the noiseless case. This can be shown by taking the zero-noise limit

A=nI, n-0, (71)
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Figure 10: Noiseless IFA vs. ICA. Left: source densities histograms. These sources were mixed by a random 2 x 2
matrix. Middle: joint density of the sources recovered from the mixtures by Seesaw. Right: same for ICA.

where I is the L x L unit matrix, and examine the learning rule for H (first line in (29)). Using (71) in
(80,81), the source posterior becomes singular,

p(x|a,y)=0[x-py)], ply)=HH'Hy, (72)

and loses its dependence of the source states q. This simply expresses the fact that, for a given observation
¥, the sources x are given by their conditional mean (x | y) with zero variance,

x|y)=py), x"|y)=pypy)", (73)

as indeed is expected for zero noise.
The rule for H (29) now becomes

H=C,HMH'C,H)'H'H, (74)

where H' is the mixing matrix obtained in the previous iteration and Cy = Eyy” is the covariance matrix
of the observed sensor data. This rule contains no information about the source parameters; in effect, the
vanishing noise disconnected the bottom hidden layer from the top one. The bottom+visible layers now
form a separate generative model of Gaussian sources (since the only source property used is their vanishing
correlations) that are mixed linearly without noise.

In fact, if the columns of H' are L of the orthogonal L’ directions defined by the principal components
of the observed data (recall that this matrix is L' x L), the algorithm will stop. To see that, assume
H”TCyH = D is diagonal and the columns of H are orthonormal (namely, H'H = I). Then D contains
L eigenvalues of the data covariance matrix, which itself can be expressed as C, = HDH”. By direct
substitution, the rule (74) reduces to H = H'. Hence, the M-step contributes nothing towards minimizing
the error since W = W' is already a minimum of F(W', W) (22), so F(W', W) = F(W',W') in (28).
Mathematically, the origin of this phenomenon lies in the sensor density conditioned on the sources (14)
becoming non-analytic, i.e., p(y | x) = 6(y — Hx).

A more complete analysis of the generative model formed by linearly mixing uncorrelated Gaussian
variables (Tipping and Bishop 1997) shows that any H, whose columns span the L-dimensional space defined
by any L principal directions of the data, is a stationary point of the corresponding likelihood; in particular,
when the spanned space is defined by the first L principal directions, the likelihood is maximal at that point.

We conclude that in the zero-noise case, the EM algorithm (29,30) performs PCA rather than IFA,
with the top layer learning a factorial MOG model for some linear combinations of the first L principal
components. For non-zero but very low noise, convergence from the PCA to IFA solution will therefore be
rather slow, and the noiseless IFA algorithm may become preferable.

It is also interesting to point out that the rule (74), obtained as a special case of noiseless IFA, has
been discovered quite recently by Tipping and Bishop (1997) and independently by Roweis (1998) as an EM
algorithm for PCA.
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8 Conclusion

This paper introduced the concept of independent factor analysis, a new method for statistical analysis of
multi-variable data. By performing IFA, the data are interpreted as arising from independent, unobserved
sources that are mixed by a linear transformation with added noise. In the context of the blind source
separation problem, IFA separates non-square, noisy mixtures where the sources, mixing process, and noise
properties are all unknown.

To perform IFA we introduced the hierarchical IF generative model of the mixing situation, and derived
an EM algorithm that learns the model parameters from the observed sensor data; the sources are then
reconstructed by an optimal non-linear estimator. Our IFA algorithm reduces to the well-known EM algo-
rithm for ordinary FA when the model sources become Gaussian. In the noiseless limit it reduces to the
EM algorithm for PCA. As the number of sources increases, the exact algorithm becomes intractable; an
approximate algorithm, based on a variational approach, has been derived and its accuracy demonstrated.

An EM algorithm specifically for noiseless IFA, associated with a linear source estimator, has also been
derived. This algorithm and, in particular, its generalized EM versions, combine separating the sources by
Bell and Sejnowski’s (1995) ICA with learning their densities using the EM rules for mixtures of Gaussians.
In the Chase version, the source densities are learned simultaneously with the separating matrix, whereas the
Seesaw version learns the two parameter sets in alternating phases. Hence, an efficient solution is provided
for the problem of incorporating adaptive source densities into ICA.

A generative model similar to IF were recently proposed by Lewicki and Sejnowski (1998). In fact, their
model was implicit in Olshausen and Field’s (1996) algorithm, as exposed in Olshausen (1996). This model
uses a Laplacian source prior p(z;) o< e~ 1%l and the integral over the sources required to obtain p(y) in
(7) is approximated by the value of the integrand at its maximum; this approximation can be improved
upon by incorporating Gaussian corrections (Lewicki and Sejnowski 1998). The resulting algorithm was
used to derive efficient codes for images and sounds (Lewicki and Olshausen 1998), and was put forth as a
computational model for interpreting neural responses in V1 in the efficient coding framework (Olshausen
and Field 1996, 1997). In contrast with IFA, this algorithm use a non-adaptive source density model and
may perform poorly on non-Laplacian sources; it uses gradient ascent rather than the efficient EM method;
and the approximations involved in its derivation must be made even for a small number of sources, where
exact IFA is available. It will be interesting to compare the performance of this algorithm with variational
IFA on mixtures of many sources with arbitrary densities.

An EM algorithm for noisy BSS, which was restricted to discrete sources whose distributions are known
in advance, was developed in Belouchrani and Cardoso (1994). Moulines et al. (1997) proposed an EM
approach to noisy mixing of continuous sources. They did not discuss source reconstruction, and their
method was restricted to a small number of sources and did not extend to noiseless mixing; nevertheless,
they had essentially the same insight as the present paper regarding the advantage of mixture source models.
A related idea was discussed in Roweis and Ghahramani (1997).

An important issue that deserves a separate discussion is the determination of the number L of hidden
sources, assumed known throughout this paper. L is not a simple parameter since increasing the number
of sources increases the number of model parameters, resulting, in effect, in a different generative model.
Hence, to determine L one should use model comparison methods, on which extensive literature is available
(see, e.g., Mackay’s (1992) discussion of Bayesian model comparison using the evidence framework). A much
simpler but imprecise method would exploit the data covariance matrix Cy, = Eyy”, and fix the number
of sources at the number of its ‘significant’ (with respect to some threshold) eigenvalues. This method is
suggested by the fact that in the zero-noise case, the number of positive eigenvalues is precisely L; however,
for the noisy case the result will depend strongly on the threshold (which there is no systematic way to
determine), and the accuracy of this method is expected to decrease with increasing noise level.

Viewed as a data modeling tool, IFA provides an alternative to factor analysis on the one hand and to
mixture models on the other, by suggesting a description of the data in terms of a highly constrained mixture
of co-adaptive Gaussians, and simultaneously in terms of independent underlying sources which may reflect
the actual generating mechanism of those data. In this capacity, IFA may be used for noise removal and
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completion of missing data. It is also related to the statistical methods of projection pursuit (Friedman and
Stuetzle 1981; Huber 1985) and generalized additive models (Hastie and Tibshirani 1990); a comparative
study of IFA and those techniques would be of great interest.

Viewed as a compression tool, IFA constitutes a new method for redundancy reduction of correlated
multi-channel data into a factorial few-channel representation given by the reconstructed sources. It is
well known that the optimal linear compression is provided by PCA and is characterized by the absence
of second-order correlations among the new channels. In contrast, the compressed IFA representation is a
non-linear function of the original data, where the non-linearity is effectively optimized to ensure the absence
of correlations of arbitrarily high orders.

Finally, viewed as a tool for source separation in realistic situations, IFA is currently being extended
to handle noisy convolutive mixing, where H becomes a matrix of filters. This extension exploits spatio-
temporal generative models introduced by Attias and Schreiner (1998), where they served as a basis for
deriving gradient-descent algorithms for convolutive noiseless mixtures. A related approach to this problem
is outlined in Moulines et al. (1997). In addition to more complicated mixing models, IFA allows the use of
complex models for the source densities, resulting in source estimators that are optimized to the properties
of the sources and can thus reconstruct them more faithfully from the observed data. A simple extension of
the source model used in the present paper could incorporate the source auto-correlations, following Attias
and Schreiner (1998); this would produce a non-linear, multi-channel generalization of the Wiener filter.
More powerful models may include useful high-order source descriptions.

A TFA: Derivation of the EM Algorithm
Here we provide the derivation of the EM learning rules (29,30) from the approximate error (26).

A.1 E-Step

To obtain F in terms of the IF model parameters W, we first substitute p(y | x) = G(y — Hx, A) (14) in
(26) and obtain, with a bit of algebra,

1 1
Fy = glog|det A [+5Tr A" (yy" —2y(<" | y)HY + H(xx" | y)H') . (75)

The integration over the sources x required to compute Fy (26) appears in (75) via the conditional mean
and covariance of the sources given the observed sensor signals, defined by

(m(x) |y, W) = / dx p(x | y, W') m(x) , (76)

where we used m(x) = x, xx'; note that these conditional averages depend on the parameters W' produced
by the previous iteration. We point out that for a given y, (x | y) is an L x 1 vector and (xx? | y) is an
L x L matrix.

Next, we substitute p(z; | ¢;) = G(x; — i g, Viyg;) in (26) to get

L n;
& 1 .
Fp = Z Z p(g |y, W') [5 log v;,q; + (27 | 4i,¥) — 2@ | @i V) isa: + 1134,) | (77)

1
2V; 4
i=1 q;=1 2,95

where the integration over the source z; indicated in Fp (26) enters via the conditional mean and variance
of this source given both the observed sensor signals and the hidden state of this source, defined by

(m(z:) | gy, W') = / dz; p(a; | gy, W') m(zs) (78)
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and we used m(z;) = xz;, z2.

7. Note from (77) that the quantity we are actually calculating is the joint
conditional average of the source signal z; and state g;, i.e., {(z;,q; | ¥, W') = p(¢; | y, W) (m(z;) | ¢;, y, W') =
Jdz; p(zi,q; | y, W') m(z;). We broke the posterior over those hidden variables as in (77) for computational
convenience.

Finally, for the top layer we have

Z Z p(gi |y, W') logwiyg, - (79)

i=1 ¢;=1

To complete the E-step we must express the conditional averages (76,78) explicitly in terms of the
parameters W'. The key to this calculation are the conditional densities p(x | q,y, W') and p(q | y, W'),
whose product is the posterior density of the unobserved source signals and states given the observed sensor
signals, p(x,q | y, W'). Starting from the joint (15), it is straightforward to show that, had both the sensor
signals and the state from which each source is drawn been known, the sources would have a Gaussian
density,

p(x|q,y) =G [x = pqa(y), Zq] (80)
with covariance matrix and mean given by

Sq=HIATH+ V), pu(y) = Sq (H Ay + V) - (81)

Note that the mean depends linearly on the data.
The posterior probability of the source states given the sensor data can be obtained from (12,17) via

p(@p(y | 9)
pqly . 82
Haly) =5 oty @) 2
We are now able to compute the conditional source averages. From (80) we have
(x]q,y) =pa(¥y), (x| y) =Tq+pg(¥)pgy)" - (83)

To obtain the conditional averages given only the sensors (76) we sum (83) over the states q with
probabilities p(q | y) (82) to get

quly x) | q,y) , (84)

taking m(x) = x, xx?. We point out that the corresponding source posterior density, given by p(x | y) =
Eqp(q | ¥)p(x | 4,¥), is a co-adaptive MOG, just like the sensor density p(y) (16). Notice that the sums

over q in (82) and (84) mean . > >, .
Individual source averages (78) appear in (77) together with the corresponding state posterior, and their
product is given by summing over all the other sources,

pai | y)(m(z:) | ¢, y) = Y pla|y)(m(z:)|a.y), (85)
{a5} i

and using the results (82,83).
Finally, the individual state posterior appearing in (79) is similarly obtained from (82):

plai|ly)= > plaly). (86)
{gi}i=i

We emphasize that all the parameters appearing in (80-86) belong to W'. Substituting these expressions
n (75,77,79) and adding them up completes the E-step which yields F(W', W).
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A.2 M-Step

To derive the EM learning rules we must minimize 7 (W', W) obtained above with respect to W. This can
be done by first computing its gradient 0F /OW layer by layer. For the visible layer parameters we have

OFv 1T 1 T

s - A y(x' |y)—A H{xx" |y),

8ﬂ = _lAfl lAfl T_ T HT + HixxT HO) AL

A = A Tt3 (yv" —2y(x" |y)H" + H(xx" | y)H") ; (87)

whereas for the bottom hidden layer

0Fg 1

e o p(ai |y) (s | @6, Y) — pivg:) »

0Fg 1

5 = ———5plai |y) (&7 | ai,y) — 2(ms | @, Y thivg: + 143, — Virgs) - (88)
Vi,qi 2Vi,q,'

In computing the gradient with respect to the top hidden layer parameters we should ensure that,
being probabilities w; 4, = p(g;), they satisfy the non-negativity w;,, > 0 and normalization ) g Wigs =1
constraints. Both can be enforced automatically by working with new parameters w; 4, , related to the mixing
proportions through

eWi,q;

Wi,q; = Zewi’qi . (89)
4
The gradient is then taken with respect to the new parameters:
OFr
—p(q; Wi q; - 90
Diis P(ai | y) + wig (90)

Recall that the conditional source averages and state probabilities depend on W' and that the equations
(87-90) include averaging over the observed y. We now set the new parameters W to the values that make
the gradient vanish, obtaining the IF learning rules (29,30).

B Variational IFA: Derivation of the Mean-Field Equations

To derive the mean-field equations (52-54), we start from the approximate error F(7,W) (46) using the
factorial posterior (47). The approximate error is composed of the three layer contributions and the negative
entropy of the posterior, as in (25). Fy, Fg, and Fr are given by (75,77,79) with the conditional source
means and densities expressed in terms of the variational parameters 7 via (49,50).

The last term in F is given by

L n;
. 1
Fa(t) =YY kig (5 log & 4; — log ni,qi) + Const. , (91)

=1 ¢;=1

where Const. reflects the fact that the source posterior is normalized. Fg (91) is obtained by using the
factorial posterior (47) in (27). Note that since this term does not depend on the generative parameters W,
it did not contribute to the exact EM algorithm but is crucial for the variational approximation.

To minimize F with respect to 7 we compute its gradient 0F /0T:

OF 1/ 1 1
= -3 (Hz’i + ) Ki,gi 5

gi,th 2 Vi,q; gi,th
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OF ; _ 1
R (CE SR 35 SF HSRUME AL, P Py
¢i7qi ’qz .7761 q; =1 Vivqi
OF 1 2 1 w2+ &g
= —logkig +logw; g + = | logé&; A} — — | logug g, + —E—
P 0g Ki,q; +10gwi q; + 2 ( g&ia + Eia 5 g Vi,q; + Via
21_{ii£i,Qi + 2. (92)

The first equation leads directly to (52). The second and third equations, after a bit of simplification
using (52), lead to (53,54). The z; reflect the normalization of the mixing proportions k;,: to impose
normalization, we actually minimize 7 + 37, z;(3_,, Ki,q; — 1) using the method of Lagrange multipliers.

C Noiseless IFA: Derivation of the GEM Algorithm

In this appendix we derive the GEM learning rules for the noiseless case (57). This derivation follows the
same steps as the one in Appendix A.

C.1 E-Step
By substituting p(z; | ;) = G(=i — pi, v;) in (62) we get for the bottom layer
(@i = pia;)’
Fp = Z Z plgi | zi, W log Vige + ot (93)
i=1 qi=1 By

whereas for the top layer we have

Z Z p(gi | zi, W') logw;g, - (94)

i=1 q;=1

Note that, unlike Fg in the noisy case, no conditional source means should be computed. The posterior
probability of the i-th source states is obtained from Bayes’ rule:

p(zi | ¢:)p(q:)

(e %) =S - (95)
) =5 bl | e
q;
C.2 M-Step
To derive the learning rule for the unmixing matrix G we use the error gradient
oF I —1 T
ag — ~(G1) ey, (96)

where ¢(x) is given by (65). To determine the increment of G we use the relative gradient of the approximate
error,

8—fGTG =G —np(x)xTG . (97)

9G =15G

Since the extremum condition §G = 0, implying E¢(Gy)y? GT =1, is not analytically solvable, (97) leads
to the iterative rule (64).
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As explained in (Amari et al. 1996; Cardoso and Laheld 1996; Mackay 1996), the relative gradient has
an advantage over the ordinary gradient since the algorithm it produces is equivariant, i.e., its performance
is independent of the rank of the mixing matrix, and its computational cost is lower since it does not require
matrix inversion.

The learning rules (30) for the MOG source parameters are obtained from the gradient of the bottom
and top layer contributions,

0FB 1

Ottig: = _Vi,q,- p(gi | 7:)(Ti — pig;) 5

0FB 1

Ov; q; - _21/1',111' p(ai [ i) [(xz B m’qi)z B Vi’q"] ’

oOF

3 T = —p(gi | %) + wig, , (98)
Wi, q;

where the last line was obtained using (89).
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